Skip to main content

Prerequisites

  • Java 11 or higher
  • (Optional) Phoenix API key if using auth

Add Dependencies

Add the dependencies to your build.gradle:
dependencies {
    // OpenInference instrumentation
    implementation project(path: ':instrumentation:openinference-instrumentation-langchain4j')

    // LangChain4j
    implementation "dev.langchain4j:langchain4j:${langchain4jVersion}"
    implementation "dev.langchain4j:langchain4j-open-ai:${langchain4jVersion}"

    // OpenTelemetry
    implementation "io.opentelemetry:opentelemetry-sdk"
    implementation "io.opentelemetry:opentelemetry-exporter-otlp"
    implementation "io.opentelemetry:opentelemetry-exporter-logging"
}

Setup Phoenix

  • Docker
  • Phoenix Cloud
Pull latest Phoenix image from Docker Hub:
docker pull arizephoenix/phoenix:latest
Run your containerized instance:
docker run -p 6006:6006 -p 4317:4317 arizephoenix/phoenix:latest
This command:
  • Exposes port 6006 for the Phoenix web UI
  • Exposes port 4317 for the OTLP gRPC endpoint (where traces are sent)
For more info on using Phoenix with Docker, see Docker.
If you are using Phoenix Cloud, adjust the endpoint in the code below as needed.

Configuration for Phoenix Tracing

private static void initializeOpenTelemetry() {
        // Create resource with service name
        Resource resource = Resource.getDefault()
                .merge(Resource.create(Attributes.of(
                        AttributeKey.stringKey("service.name"), "langchain4j",
                        AttributeKey.stringKey(SEMRESATTRS_PROJECT_NAME), "langchain4j-project",
                        AttributeKey.stringKey("service.version"), "0.1.0")));

        String apiKey = System.getenv("PHOENIX_API_KEY");
        OtlpGrpcSpanExporterBuilder otlpExporterBuilder = OtlpGrpcSpanExporter.builder()
                .setEndpoint("http://localhost:4317") # adjust as needed
                .setTimeout(Duration.ofSeconds(2));
        OtlpGrpcSpanExporter otlpExporter = null;
        if (apiKey != null && !apiKey.isEmpty()) {
            otlpExporter = otlpExporterBuilder
                    .setHeaders(() -> Map.of("Authorization", String.format("Bearer %s", apiKey)))
                    .build();
        } else {
            logger.log(Level.WARNING, "Please set PHOENIX_API_KEY environment variable if auth is enabled.");
            otlpExporter = otlpExporterBuilder.build();
        }

        // Create tracer provider with both OTLP (for Phoenix) and console exporters
        tracerProvider = SdkTracerProvider.builder()
                .addSpanProcessor(BatchSpanProcessor.builder(otlpExporter)
                        .setScheduleDelay(Duration.ofSeconds(1))
                        .build())
                .addSpanProcessor(SimpleSpanProcessor.create(LoggingSpanExporter.create()))
                .setResource(resource)
                .build();

        // Build OpenTelemetry SDK
        OpenTelemetrySdk.builder()
                .setTracerProvider(tracerProvider)
                .setPropagators(ContextPropagators.create(W3CTraceContextPropagator.getInstance()))
                .buildAndRegisterGlobal();

        System.out.println("OpenTelemetry initialized. Traces will be sent to Phoenix at http://localhost:6006");
    }
}

Run LangChain4j

By instrumenting your application, spans will be created whenever it is run and will be sent to the Phoenix server for collection.
import io.openinference.instrumentation.langchain4j.LangChain4jInstrumentor;
import dev.langchain4j.model.openai.OpenAiChatModel;

initializeOpenTelemetry();

// Auto-instrument LangChain4j
LangChain4jInstrumentor.instrument();

// Use LangChain4j as normal - traces will be automatically created
OpenAiChatModel model = OpenAiChatModel.builder()
    .apiKey("your-openai-api-key")
    .modelName("gpt-4")
    .build();

String response = model.generate("What is the capital of France?");

Observe

Once configured, your traces will be automatically sent to Phoenix where you can:
  • Monitor Performance: Track latency, throughput, and error rates
  • Analyze Usage: View token usage, model performance, and cost metrics
  • Debug Issues: Trace request flows and identify bottlenecks
  • Evaluate Quality: Run evaluations on your LLM outputs

Resources