Evaluator Message Formats
Phoenix evaluators now support flexible prompt formats in both Python and TypeScript, giving you full control over how you structure prompts for LLM-based evaluations.Supported Formats
String Templates - Simple templates with variable placeholders:- Python
- TypeScript
role and content fields for multi-turn prompts:
- Python
- TypeScript
Template Variable Syntax
- Python: Supports both f-string (
{variable}) and mustache ({{variable}}) syntax with auto-detection - TypeScript: Uses mustache syntax (
{{variable}})
Provider Compatibility
Adapters handle provider-specific message transformations automatically:| Provider | Transformation |
|---|---|
| OpenAI | System role converted to developer role for reasoning models |
| Anthropic | System messages extracted to system parameter |
| Google GenAI | System messages passed via system_instruction |
| LiteLLM | Messages passed in OpenAI format (LiteLLM handles conversion) |
| LangChain | Converted to LangChain message objects |

